DPP - 3 (SHM)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/89

https://youtu.be/3yEFBgLvQ5w

https://physicsaholics.com/note/notesDetalis/29

Q 1. Periodic time of oscillation T_{1} is obtained when a mass is suspended from a spring and if another spring is used with same mass, then periodic time of oscillation is T_{2}. Now if this mass is suspended from series combination of above springs then calculated the time period.
(a) $T_{1}+T_{2}$
(b) $\frac{T_{1} T_{2}}{T_{1}+T_{2}}$
(c) $T_{1} T_{2}$
(d) $\sqrt{T_{1}^{2}+T_{2}^{2}}$

Q 2. A spring has a certain mass suspended from it and its period for vertical oscillation is T. The spring is now cut into two equal hatves and the same mass is suspended from one of the halves. The period of vertical oscillation is now
(a) $\frac{T}{2}$
(b) $\frac{T}{\sqrt{2}}$
(c) $\sqrt{2} T$
(d) 2 T

Q 3. In a spring bloek system if length of the spring is reduced by 1%, then time period
(a) increase by 2%
(b) increase by 0.5%
(c) decrease by 2%
(d) decrease by 0.5%

Q 4. A spring mass system has time period of 2 second. What should be the spring constant of spring if the mass of the block is 10 grams?
(a) $0.1 \mathrm{~N} / \mathrm{m}$
(b) $100 \mathrm{~N} / \mathrm{m}$
(c) $10^{4} \mathrm{~N} / \mathrm{m}$
(d) $500 \mathrm{~N} / \mathrm{m}$

Q 5. Time period of a block with a spring is T_{0}. Now ,the spring is cut in two parts in the ratio $2: 3$. Now find the time period of same block with the smaller part of the spring.
(a) $\sqrt{\frac{2}{5}} T_{0}$
(b) $\sqrt{\frac{5}{2}} T_{0}$
(c) $\frac{T_{0}}{\sqrt{2}}$
(d) $\frac{3 T_{0}}{2}$

Q 6. Two springs of force constants K and 2 K are connected to a mass as shown below. The frequency of oscillation of the mass is

(a) $\frac{1}{2 \pi} \sqrt{\frac{K}{m}}$
(b) $\frac{1}{2 \pi} \sqrt{\frac{2 K}{m}}$

(c) $\frac{1}{2 \pi} \sqrt{\frac{3 K}{m}}$
(d) $\frac{1}{2 \pi} \sqrt{\frac{K}{3 m}}$

Q 7. Two bodies M and N of equal masses are suspended from two separate massless springs of force constants k_{1} and k_{2} respectively. If the two bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude M to that of N is
(a) $\frac{k_{1}}{k_{2}}$
(b) $\sqrt{\frac{k_{1}}{k_{2}}}$
(c) $\frac{k_{2}}{k_{1}}$
(d) $\sqrt{\frac{k_{2}}{k_{1}}}$

Q 8. When a body of mass 1.0 kg is suspended from a certain light spring hanging vertically, its length increases by 5 cm . By suspending 2.0 kg block to the spring and if the block is pulled through 10 cm and released the maximum velocity in it in m / s is: ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) 0.5
(b) 1
(c) 2
(d) 4

Q 9. A particle of mass 1 kg is executing s.h.m. on x axis under the action of force $\mathrm{F}=x^{2}-4 \mathrm{x}$. Angular frequency of s.h.m. is
(a) 1 per sec
(b) 2 per sec
(c) 4 per sec
(d) 6 per sec

Q 10. Two springs of the same material same round per unit length and same thickness of wire but of length L and $2 L$ are suspended with masses M and 2M attached at their lower ends. Their time periods when they are atlowed to oscillate will be in the ratio

(b) 2 M

(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$

Q 11. A mass m is suspended from a weightless spring and it has time-period ' T '. The spring is now divided into four equal parts and the same mass is suspended from one of these parts. The now time period will be -
(a) T
(b) $\mathrm{T} / 2$
(c) 2 T
(d) $\mathrm{T} / 4$

Q 12. A spring mass system is hanging from the ceiling of an elevator in equilibrium. The elevator suddenly starts accelerating upwards with acceleration a, the amplitude of the resulting S.H.M. is-

(a) $\frac{m g}{k}$
(b) $\frac{m a}{k}$
(c) $\frac{m(g+a)}{k}$
(d) $\frac{m(g-a)}{k}$

Q 13. Four springs of constant as shown are attached to a pair of masses m each as shown. The time period will be 2 p times-

(a) $\sqrt{\frac{m}{k}}$
(b) $\sqrt{\frac{2 m}{k}}$
(c) $\sqrt{\frac{4 m}{k}}$
(d) $\sqrt{\frac{3 m}{4 k}}$

Answer Key

Q. 1 d	Q. 2 b	Q. 3 d	Q. 4 a	Q. 5 a
Q. 6 c	Q. 7 d	Q. 8 b	Q. 9 b	Q. 10 a
Q. 11 b	Q. 12 b	Q. 13 d		

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

NEET \& JEE Main Physics DPP- Solution

DPP-3 SHM: Spring block system, time period of systems
By Physicsaholics Team

Q1) Periodic time of oscillation T_{1} is obtained when a mass is suspended from a spring and if another spring is used with same mass then periodic time of oscillation is T_{2}. Now if this mass is suspended from series combination of above springs then calculated the time period.
(a) $T_{1}+T_{2}$
(b) $\frac{r_{1} T_{2}}{T_{1}+T_{2}}$

$$
T_{2}=2 \pi \sqrt{\frac{m^{\prime}}{k_{2}}}
$$

(c) $T_{1} T_{2} \quad \frac{1}{k}=\frac{1}{k},+\frac{1}{k}$
(A) $\sqrt{T_{1}^{2}+T^{2}}$

$$
\begin{aligned}
& \text { for Series Combination } \\
& \text { K is effective Constant } \\
& T=2 \pi \sqrt{\frac{m}{K}}
\end{aligned}
$$

$G_{1}=2 \pi \sqrt{\frac{m}{k}}$

Q2) A spring has a certain mass suspended from it and its period for vertical oscillation is T. The spring is now cut into two equal halves and the same mass is suspended from one of the halves. The period of vertical oscillation is now
(a) $\frac{T}{2}$
(c) $\sqrt{2} T$
(d) $2 T$

?

$$
\begin{aligned}
T^{\prime} & =2 \pi \sqrt{\frac{m}{2 k}} \\
& =\frac{1}{\sqrt{2}} \times T
\end{aligned}
$$

Q3) In a spring block system if length of the spring is reduced by 1%, then time period

$$
\begin{aligned}
& K^{\prime}=\frac{K l_{0}}{l} \\
& \frac{\Delta K^{\prime}}{K^{\prime}}=-\frac{\Delta l}{l l}
\end{aligned}
$$

(a) increase by 2%
(b) increase by 0.5%
(c) decrease by 2%
(d) decrease by 0.5%

$$
\begin{aligned}
& b=2 \sqrt{\frac{m}{k}}=2 \pi \frac{m^{1 / 2}}{k^{1 / 2}} \\
& \frac{\Delta I}{T}=-\frac{1}{2} \frac{\Delta K^{\prime}}{K^{\prime}}=\frac{-1}{2}\left(\frac{\Delta l}{l}\right) \\
& \% \text { Changein } T=+\frac{1}{2} X \% \text { change in } l \text {. } \\
& =-\frac{1}{2} \%
\end{aligned}
$$

Q4) A spring mass system has time period of 2 second. What should be the spring constant of spring if the mass of the block is 10 grams?
(a) $0.1 \mathrm{~N} / \mathrm{m}$
(c) $10^{4} \mathrm{~N} / \mathrm{m}$
(b) $100 \mathrm{~N} / \mathrm{m}$
(d) $500 \mathrm{~N} / \mathrm{m}$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

$$
(2)=2 \pi \sqrt{\frac{.01}{k}}
$$

$$
1=\pi^{2} \times \frac{.01}{k}
$$

$$
K=.01 \pi^{2}
$$

$$
=1
$$

Q5) Time period of a block with a spring is T_{0}. Now the spring is cut in two parts in the ratio 2:3. Now find the time period of same block with the smaller part of the spring.
(a) $\sqrt{\frac{2}{5}} T_{0}$

$$
T_{0}=2 \pi \sqrt{\frac{m}{k_{0}}}
$$

(c) $\frac{T_{0}}{\sqrt{2}}$

$$
\begin{aligned}
& k_{1}=\frac{k_{0} l_{0}}{2 l_{0} / 5} \\
& k_{1}=\frac{5 k_{0}}{2} \\
& \frac{k_{0}}{k_{1}}=2 / 5
\end{aligned}
$$

Q6) Two springs of force constants K and 2 K are connected to a mass as shown below. The frequency of oscillation of the mass is

$$
\begin{array}{ll}
A_{1} & A_{2} \\
m & m
\end{array}
$$

Q7) Two bodies M and N of equal masses are suspended from two separate massless springs of force constants k_{1} and k_{2} respectively. If the two bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude M to that of N is
(a) $\frac{k_{1}}{k_{2}}$
(c) $\frac{k_{2}}{k_{1}}$

Q8) When a body of mass 1.0 kg is suspended from a certain light spring hanging vertically, its length increases by 5 cm . By suspending 2.0 kg block to the spring and if the block is pulled through 10 cm and released the maximum velocity in it in m / s is : $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 0.5

$$
\frac{m g}{k}=5 \times 10^{-2}
$$

(c) 2

$$
K=\frac{1 x+\theta^{2}}{5 \times 10^{-2}}
$$

(b) 1

$$
\begin{aligned}
& =200 \mathrm{~N} / \mathrm{m} \\
& \sqrt{\text { max }}=A
\end{aligned}
$$

Q9) A particle of mass 1 kg is executing s.h.m. on x axis under the action of force $\mathrm{F}=x^{2}-4 \mathrm{x}$. Angular frequency of s.h.m. is

$$
F=x^{2}+4 x, F=0 \Rightarrow x=0,4 .
$$

(a) 1 per sec
(b) 2 per sec
(c) 4 per see
(d) 6 persec
for semallamplitude.

$$
\begin{aligned}
\omega^{2} & =4 \\
\xi & =2
\end{aligned}
$$

Q10) Two springs of the same material same round per unit length and same thickness of wire but of length L and 2 L are suspended with masses M and 2 M attached at their lower ends. Their time periods when they are allowed to oscillate will be in the ratio

$$
T_{1}=2 \pi \sqrt{\frac{m}{2 k}}
$$

$$
T_{2}=2 \pi \sqrt{\frac{2 M}{k}}
$$

$$
\frac{T_{1}}{T_{2}}=\sqrt{\frac{1}{2 \times 2}}=1 \cdot 2
$$

(c) $1: 4$
(d) $4: 1$

Q11) A mass m is suspended from a weightless spring and it has time-period ' T^{\prime}. The spring is now divided into four equal parts and the same mass is suspended from one of these parts. The now time period will be -
(a) T
$k=\frac{k_{0} l_{0}}{l_{0} / \hbar}=4 k_{0}$

$\frac{V}{V}=2 \pi \sqrt{\frac{m}{k!}}$
$10 / k$
(c) 2 T
(d) $\mathrm{T} / 4$
$\frac{T}{T}=\sqrt{\frac{1}{4}}=1 / 2$ $T^{\prime}=T / 2$

Q12) A spring mass system is hanging from the ceiling of an elevator in equilibrium. The elevator suddenly starts accelerating upwards with acceleration a, the amplitude of the resulting S.H.M. is-

$$
\begin{aligned}
k x_{0} & =m(g+a) \\
x_{0} & =m(g+a)
\end{aligned}
$$

(a) $\frac{m g}{k}$

Q13) Four springs of constant as shown are attached to apair of masses m each as shown. The time period will be 2π times-
(a) $\sqrt{\frac{m}{k}}$
(c) $\sqrt{\frac{4 m}{k}}$
(b) $\sqrt{\frac{2 m}{k}}$

$$
\left.\begin{array}{l}
T=2 \pi \sqrt{\frac{\mu}{K^{\prime}}} \text { reduced } \\
\text { mass }
\end{array}\right] \begin{aligned}
& \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{m}{2}
\end{aligned}
$$

(d) $\sqrt{\frac{3 m}{4 k}}$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/89

Video Solution on YouTube:-
https://youtu.be/3yEFBgLvQ5w

Written Solution on Website:-

Chalo Nikis

